Computing Versal Deformations

نویسنده

  • Jan Stevens
چکیده

Introduction 1. How to Solve the Deformation Equation 2. Deformations of Singularities 3. Smoothing Components of Curves 4. The Versal Deformation of L14 5. Remarks References Acknowledgement Electronic Availability In recent years I have computed versal deformations of various singularities, partly by hand, but mostly with the program Macaulay. I explain here how to do these computations. As an application I discuss the smoothability of a certain curve singularity, a case I had not been to settle with general methods. As a result I find an example of a reduced curve singularity with several smoothing components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leibniz algebra deformations of a Lie algebra

In this note we compute Leibniz algebra deformations of the 3-dimensional nilpotent Lie algebra n3 and compare it with its Lie deformations. It turns out that there are 3 extra Leibniz deformations. We also describe the versal Leibniz deformation of n3 with the versal base.

متن کامل

1 4 Ju n 20 06 n - dimensional global correspondences of Langlands over singular schemes ( II )

Belgium " This paper is dedicated to R. Thom who, by his enthusiasm, convinced me of the importance of the singularities and, by his patience , backed me up along my long research towards the blowups of the versal deformations , the geometries of these processes and the (strange) attractors tied up to these ". Abstract A rather complete phenomenology of the singularities is developed according ...

متن کامل

Versal Unfoldings of Equivariant Linear Hamiltonian Vector Fields

We prove an equivariant version of Galin’s theorem on versal deformations of infinitesimally symplectic matrices. Matrix families of codimension zero and one are classified, and the results are used to study the movement of eigenvalues in one parameter families.

متن کامل

Simultaneous versal deformations of endomorphisms

We study the set M of pairs (f, V ), defined by an endomorphism f of F and a ddimensional f–invariant subspace V . It is shown that this set is a smooth manifold that defines a vector bundle on the Grassmann manifold. We apply this study to derive conditions for the Lipschitz stability of invariant subspaces and determine versal deformations of the elements of M with respect to a natural equiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1995